Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis
نویسندگان
چکیده
BACKGROUND Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. RESULTS Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEX-corn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. CONCLUSION The carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.
منابع مشابه
Co-hydrolysis of hydrothermal and dilute acid pretreated populus slurries to support development of a high-throughput pretreatment system
BACKGROUND The BioEnergy Science Center (BESC) developed a high-throughput screening method to rapidly identify low-recalcitrance biomass variants. Because the customary separation and analysis of liquid and solids between pretreatment and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term 'co-hydrolysis' wa...
متن کاملConversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery
Background Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species Agave tequilana and Agave salmiana were subjected to pretreatment using the ammonia fiber expa...
متن کاملThe influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis
BACKGROUND Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should b...
متن کاملCombined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids.
A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potenti...
متن کاملYield-determining factors in high-solids enzymatic hydrolysis of lignocellulose
BACKGROUND Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which c...
متن کامل